Página editada por Antonio L. Manzanero, profesor de la Facultad de Psicología de la Universidad Complutense de Madrid. España

Translate

Facultad de Psicología
Campus de Somosaguas
28223 - POZUELO DE ALARCÓN (MADRID)
Accesos:  Metro Ligero (Campus de Somosaguas)  Autobuses: A,H,I

El cerebro produce miles de neuronas nuevas hasta pasados los 80 años

Investigadores españoles observan una alta capacidad de regeneración en el hipocampo, epicentro de la memoria y el aprendizaje



Varios investigadores observan muestras cerebrales en una imagen de archivo.
Varios investigadores observan muestras cerebrales en una imagen de archivo.

Durante más de siete años, la bióloga María Llorens ha recopilado cuidadosamente trocitos de cerebro de personas fallecidas. Algunas no sufrían ninguna enfermedad neurodegenerativa y otras tenían indicios claros de alzhéimer. Un neuropatólogo extrajo de cada cerebro el hipocampo, el epicentro de la memoria, tomó muestras de un centímetro de lado, aplicó productos químicos para conservarlas sin dañarlas y se las envió a Llorens. Ella las cortó en finísimas láminas de cinco micras para poder observarlas al microscopio. En total, consiguió muestras de 58 personas que eran como oro puro, pues este tipo de material biológico es escaso debido al reducido número de cuerpos donados a la ciencia.
Gracias al estudio de esos cerebros el grupo de investigación de Llorens en el Centro de Biología Molecular Severo Ochoa ha confirmado que los humanos generamos neuronas nuevas a lo largo de toda la vida. Hasta personas cercanas a los 90 años producen decenas de miles de células nerviosas nuevas que son esenciales para la memoria y el aprendizaje.
María Llorens (centro) junto a su grupo de investigación en el Centro de Biología Molecular Severo Ochoa (CSIC-UAM)
María Llorens (centro) junto a su grupo de investigación en el Centro de Biología Molecular Severo Ochoa (CSIC-UAM)


El estudio, publicado hoy en Nature Medicine, es una nueva y contundente entrega en una polémica científica que se ha intensificado recientemente: ¿nacemos con un número determinado de neuronas y las vamos perdiendo a lo largo de la vida o hay regeneración? La respuesta tiene importantes implicaciones tanto para el funcionamiento básico de la mente como para abordar sus enfermedades, especialmente las degenerativas como el párkinson o el alzhéimer.
La regeneración neuronal —neurogénesis— en el hipocampo se ha observado en ratones y en primates. Desde 1998, varios estudios han demostrado con métodos diferentes que también los humanos producen neuronas nuevas en el hicocampo. Uno de los más originales fue Jonás Frisén, del Instituto Karolinska, que usó isótopos del carbono 14 liberado por bombas nucleares detonadas durante la Guerra Fría para calcular la edad de las neuronas en muestras cerebrales de 55 personas fallecidas. El equipo observó que el giro dentado, parte del hipocampo, contenía cientos de neuronas nacidas después de las explosiones cuando las personas ya eran adultas
La polémica llegó con Arturo Álvarez-Buylla, premio Príncipe de Asturias en 2011 por su estudio de la neurogénesis. Su equipo intentó demostrar la existencia de neuronas jóvenes en muestras cerebrales de 59 personas de diferentes edades, desde fetos a adultos. En contra de lo que esperaba, sus resultados, publicados el año pasado, mostraron que la producción de neuronas nuevas se desploma tras el primer año de vida y desaparece al final de la infancia.
El trabajo detecta una ralentización de la producción de nuevas neuronas según avanza la edad

“Desde entonces este campo se sumió en el desconcierto”, reconoce Llorens. Su estudio ha analizado el giro dentado de 13 personas fallecidas entre los 43 y los 87 años que no sufrían enfermedades neurológicas. Los científicos aplicaron a las muestras cuatro anticuerpos que se unen a la doblecortina, una proteína de neuronas en desarrollo. Así, se detectaron unas 30.000 neuronas jóvenes por milímetro cúbico de cerebro en una zona del giro dentado conocido como capa granular. Las neuronas jóvenes suponen un 4% del total de neuronas presentes en esta zona del hipocampo, una cantidad “sorprendentemente alta”, reconoce Llorens.
El trabajo detecta una ralentización de la producción de nuevas neuronas según avanza la edad, por lo que las personas más jóvenes tienden a tener más que las más mayores. “Las neuronas granulares son las primeras que reciben un estímulo nervioso llegado de otras zonas del cerebro y permiten que sea procesado y enviado a otras áreas, por lo que tiene sentido que sean las que se regeneran a lo largo de la vida”, explica Llorens.
También se ha analizado el encéfalo de 45 personas con alzhéimer. En las fases más tempranas de la enfermedad, cuando ni siquiera se detectan agregaciones de proteínas típicas de la dolencia, existen unas 20.000 neuronas jóvenes por milímetro cúbico, un 33% menos que en las personas sanas, según el estudio. Los enfermos más avanzados tienen apenas 11.000 (un 63% menos), y representan solo el 1,5% del área del hipocampo analizada.
Los investigadores especulan con que este tipo de neuronas podría funcionar como un método de diagnóstico temprano del alzhéimerpara lo que antes habría que desarrollar un método no invasivo para usarlo en personas vivas sin causar daños o incluso ser la base de una intervención terapéutica para aumentar el número de neuronas regeneradas.
“La memoria y la capacidad de aprendizaje están disminuidas por la enfermedad de alzhéimer y los resultados que hemos obtenido lo apoyan y explican un posible mecanismo”, explica Jesús Ávila, investigador del Severo Ochoa y coautor del trabajo, en el que también han participado investigadores del CSIC, el Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, el banco de cerebros de la Fundación CIEN, y la Universidad Europea de Madrid.
Personas con alzheimer avanzado tienen un 60% menos neuronas jóvenes que las que no sufren la dolencia

El tratamiento químico que se aplica a las muestras cerebrales una vez fallecida la persona puede explicar por qué otros grupos no veían neurogénesis en adultos. Cuanto más tiempo se dejan las muestras en paraformaldehido para fijarlas, menos neuronas en estado de maduración se detectan. El estudio muestra que en el cerebro de una misma persona se pueden detectar miles de neuronas en maduración o no ver ninguna cuando la muestra se ha dejado fijando más de 12 horas. Esto puede explicar por qué Álvarez-Buylla no las encontraba en las muestras de adultos.
El neurobiólogo mexicano Álvarez-Buylla considera que la cuestión no está zanjada. "Nosotros estudiamos cerebros que habían estado fijados menos de 12 horas y no encontramos neuronas, aunque usamos un anticuerpo diferente". "Las neuronas inmaduras que ellos detectan son muy grandes, parecen de hecho totalmente maduras por el tamaño, y sorprende que bajo ellas no haya otra capa con células inmaduras más pequeñas. Este es un problema bien complicado que se remonta más de un siglo, a la época de Ramón y Cajal. Tal vez necesitemos métodos alternativos para poder zanjar la cuestión", resalta.
El año pasado, Maura Boldrini, psiquiatra de la Universidad de Columbia (EE UU), detectó regeneración neuronal en personas de 14 a 79 años. Aunque veían un declive con la edad, el estudio demostraba que personas mayores sin enfermedades neurológicas conservan esta capacidad regenerativa y especulaba que tal vez este sea un mecanismo que protege la mente de los achaques de la edad. “Este estudio aporta una confirmación muy importante”, opina la psiquiatra.
Boldrini estudia la conexión entre neurogénesis y depresión. “Hemos demostrado tanto en ratones como en humanos que los antidepresivos aumentan la producción de neuronas nuevas en el hipocampo”, explica. “Este tipo de neuronas están involucradas en la respuesta emocional al estrés y la memoria, dos capacidades que se ven mermadas con la depresión. A su vez estas neuronas conectan con la amígdala, que controla el miedo y la ansiedad, y a su vez esta conecta con otros puntos encargados de la toma de decisiones, capacidades que también se ven afectadas por la depresión”, resalta la psiquiatra.
Para Juan Carlos Portilla, vocal de la Sociedad Española de Neurología, "este trabajo despeja las dudas que habían planteado estudios anteriores, que no eran tan detallados metodológicamente". "Una de las cosas más interesantes es que desvela un nuevo mecanismo patogénico de la enfermedad de alzhéimer", destaca.

Un 40% de las personas tienen recuerdos de la infancia falsos

Casi la mitad de los participantes en un estudio evoca recuerdos de etapas de la vida en la que no se guardan memorias autobiográficas

Daniel Mediavilla
25 JUL 2018
enlace



Durante la infancia se construyen memorias que después desaparecen
Durante la infancia se construyen memorias que después desaparecen

Hay gente que dice recordar el momento de dar sus primeros pasos o cómo estaba en la cuna con los pañales puestos. En un estudio reciente con más de 6.500 participantes publicado en la revista Psychological Science, el 40% tenía memorias de este tipo, que corresponderían a bebés de uno o dos años. Sin embargo, los estudios que han tratado de determinar cuándo se forman las primeras memorias autobiográficas que perduran hasta la edad adulta concluyen que no lo hacen antes de los tres o los cuatro años. Algunos estudios consideran incluso que esos recuerdos son más bien fragmentos y para hablar de algo parecido a una memoria completa habría que esperar a los cinco o seis años de edad.
Eso no quiere decir que los niños no acumulen recuerdos. Algunos investigadores han observado cómo una persona de seis años puede recordar algo que sucedió alrededor de su primer cumpleaños, pero a partir de una cierta edad, probablemente debido a cambios durante distintas fases del desarrollo cerebral, esas memorias desaparecen y no se pueden recuperar al llegar a la adolescencia. Este fenómeno es lo que se ha bautizado como amnesia infantil. Los recuerdos que perduran suelen formarse a partir de los tres o los cuatro años, cuando los niños comienzan a contar historias sobre sus propias vidas, algo que sugiere que esas memorias están relacionadas con la capacidad para utilizar el lenguaje.
En el trabajo que se publica en Psychological Science, investigadores de la Universidad de la City de Londres trataron de explicar el origen de estas memorias ficticias. Como han mostrado en muchas ocasiones los estudiosos de la memoria, esta capacidad se parece poco a un sistema de grabación que recoge la realidad y más a la construcción de un relato que nos ayuda a tener una identidad con la que adaptarnos mejor a la vida.
Respecto a los recuerdos infantiles que nunca existieron, los investigadores creen que se generan por diversos motivos. Por un lado, hay memorias sobre cosas que sucedieron en un momento determinado a las que después se clasifica en un periodo de tiempo anterior. Por otro, en ocasiones se mezclan recuerdos vagos de una etapa temprana de la vida con datos o anécdotas que se han escuchado después. Todo junto, con el tiempo, acaba componiendo una representación mental que se acaba experimentando como si fuese una memoria de algo que sucedió en un momento concreto. Los investigadores observaron que este fenómeno era más común a partir de la mediana edad y plantean que esas personas pueden haber generado esos recuerdos porque han tenido más oportunidades de revivir su pasado y, en ese proceso, reescribirlo.
Martin Conway, director del Centro para la Memoria y la Ley de la Universidad de la City de Londres y autor principal del estudio, apunta que este tipo de memorias ficticias puede tener “una explicación adaptativa”. “Cuando somos adultos, tener una historia personal consistente y positiva puede ayudar a tener una buena imagen de uno mismo y a mejorar nuestra relación con los demás”, señala. La persona que construye estas memorias ficticias no lo hace de manera consciente. “Alguien puede hacer escuchado que su madre tenía un cochecito verde, después esta persona imagina qué aspecto podría tener y al cabo del tiempo se va formando una memoria a la que la persona acaba añadiendo nuevos elementos, como los juguetes que podría ver tumbado en ese carrito”, continúa. Todos estos recuerdos acaban por parecer reales para la persona que los evoca.
Estudios como el liderado por Conway advierten una vez más del relativo escepticismo con que debemos acercarnos a nuestras propias memorias. En algunos experimentos clásicos, como los realizados por la investigadora de la Universidad de California en Irvine Elisabeth Loftus, se ha mostrado cómo es posible insertar memorias falsas en una persona. En algunos de ellos, hasta un 16% dijo haber presenciado posesiones demoniacas y un 30% recordó haberse encontrado en Disneyland con Bugs Bunny, un personaje de la Warner, que además estaba drogado y les chupó las orejas.
Otros trabajos han observado también la influencia de la cultura en el tipo de recuerdos que elegimos recuperar de nuestra infancia. Entre los europeos o norteamericanos, por ejemplo, las personas se suelen recordar a sí mismas con más frecuencia como participantes activos en sus primeras memorias mientras los asiáticos o las personas de oriente medio se sitúan habitualmente como observadores. Una vez más, la cultura y lo que consideramos más apropiado para nuestra identidad adapta la realidad que vivimos para construir las memorias más útiles para cada uno.

Feel helpless against Alzheimer’s disease?

You can do something to help prevent it
Jan 10, 2018 / Lisa Genova



enlace

Sacha Vega/iStock

We should all feel empowered to take steps to keep our brains and bodies healthy, says neuroscientist and novelist Lisa Genova.


How many of you reading this would like to live to be at least 80 years old? I think we all have a hopeful expectation of living into old age. Now let’s project this thought out into the future, and imagine we’re all 85. Out of every two people, one of us probably has Alzheimer’s disease.

Maybe you’re thinking, “Well, it won’t be me.” OK, then, you’ll be a caregiver. In some way, this terrifying disease is likely to affect us all.

Part of the fear around Alzheimer’s stems from the sense that there’s nothing we can do about it. Despite decades of research, we still have no disease-modifying treatment and no cure. So, if we’re lucky enough to live long enough, Alzheimer’s appears to be our brain’s destiny.

But maybe it doesn’t have to be. What if I told you that we could change these statistics — perhaps change our brain’s destiny — without relying on a cure or advancements in medicine?

Before we get into this, let’s go over what we currently understand about the neuroscience of Alzheimer’s. The point of connection between two neurons, or nerve cells, is called the synapse. The synapse is where neurotransmitters are released, transmitting signals and enabling communication. It’s where we think, feel, see, hear, desire and remember — and it’s where Alzheimer’s happens.

During the information communication process, in addition to releasing neurotransmitters like glutamate into the synapse, neurons also release a small peptide called amyloid beta. Normally, amyloid beta is cleared away or metabolized by microglia, the janitor cells of our brains. While the molecular causes of Alzheimer’s are still debated, most neuroscientists believe the disease begins when amyloid beta begins to accumulate. If too much is released or not enough is cleared away, the synapse begins to pile up with amyloid beta. When this happens, it binds to itself, forming sticky aggregates called amyloid plaques.

If you’re 40 years old or older, this initial step into the disease — the presence of accumulating plaques — can already be found in your brain, but the only way to be sure of this would be through a PET scan. Otherwise, you’re not showing any impairments in memory, language or cognition … yet.

Scientists think it takes at least 15 to 20 years of amyloid plaque accumulation before it reaches a tipping point, which then triggers a molecular cascade that causes the clinical symptoms of the disease. Prior to the tipping point, your lapses in memory may include things like,”Why did I come in this room?” or “Oh, what’s his name?” or “Where did I put my keys?” Before you freak out because you’ve asked at least one of those questions in the last 24 hours, those are all normal kinds of forgetting. In fact, these examples might not even involve your memory — maybe you just didn’t pay attention to where you put your keys in the first place.

After the tipping point actually occurs, those glitches in memory, language and cognition are different. Instead of eventually finding your keys in your coat pocket or on the table by the door, you find them in the refrigerator — or you find them and you think, “What are these for?”

What happens when amyloid plaques accumulate and reach this tipping point? Our microglia janitor cells become hyper-activated, releasing chemicals that cause inflammation and cellular damage. Scientists think they might actually start clearing away the synapses themselves. A crucial neural transport protein called tau becomes hyperphosphorylated and twists itself into tangles, which choke off the neurons from the inside. By mid-stage Alzheimer’s, your brain is full of massive inflammation, tangles and cell death.

If you were a scientist trying to cure this disease, at what point would you ideally want to intervene? Many researchers are betting big on the simplest solution: keeping amyloid plaques from reaching a tipping point. As a result, drug discovery is largely focused on developing a compound that will prevent, eliminate or reduce amyloid plaque accumulation. Which means the cure for Alzheimer’s will likely be a preventative medicine. We’ll need to take a pill before we reach the tipping point, before the cascade is triggered, before we start leaving our keys in the refrigerator. That may be why, to date, these kinds of drugs have failed in clinical trials — not because the science wasn’t sound but because the people in these trials were already symptomatic. It was too late.

Think of amyloid plaques as a lit match. At the tipping point, the match sets fire to the forest. Once the forest is ablaze, it doesn’t do any good to blow out the match. You must blow out the match before the forest catches fire.

This is actually good news for us, because it turns out the way we live can influence the accumulation of amyloid plaques. There are things we can do to keep us from reaching the tipping point. Picture your risk of Alzheimer’s as a seesaw scale. Pile risk factors on one arm of your seesaw, and when that arm hits the floor, you are symptomatic and diagnosed with Alzheimer’s. So, let’s imagine you’re 50 years old. You’re not a spring chicken anymore, so you’ve accumulated some amyloid plaques with age. Your arm is tipped a little bit.

We’ve all inherited DNA from our moms and our dads, and some of our genes will increase our risk and others will decrease it. If you’re like the character Alice in my book Still Alice, you’ve inherited a rare genetic mutation that cranks out amyloid beta, which will tip your seesaw arm to the ground.

But for most of us, the genes we inherit will tip the arm only a bit. For example, the gene variant increases amyloid, but you can inherit a copy of APOE4 from Mom and Dad and still never get Alzheimer’s. That means for most of us, our DNA alone does not determine whether we get Alzheimer’s. So what does?

Sleep could be a factor. In slow-wave deep sleep, our glial cells rinse cerebrospinal fluid throughout our brains, clearing away metabolic waste that accumulated in our synapses while we were awake. Deep sleep is like a power cleanse for the brain, and a single night of sleep deprivation can lead to an increase in amyloid beta. At the same time, amyloid accumulation has been shown to disrupt sleep, which in turn causes more amyloid to accumulate. So there’s a positive feedback loop that’s going to accelerate the tipping of the seesaw. Some scientists even believe poor sleep hygiene may be a predictor of Alzheimer’s.

Cardiovascular health is another factor. High blood pressure, diabetes, obesity, smoking and high cholesterol have all been shown to increase the risk of developing Alzheimer’s. Some studies have shown that as many as 80 percent of people with Alzheimer’s also had cardiovascular disease. Aerobic exercise has been shown in numerous animal studies to decrease amyloid beta. A heart-healthy Mediterranean lifestyle and diet may be able to help counter the tipping of this scale.

There are many things we can do to try to prevent or delay the onset of Alzheimer’s, but maybe you haven’t done any of them. Let’s say you’re 65; there’s Alzheimer’s in your family, so you’ve likely inherited a gene or two that tips your scale arm a bit; you’ve been burning the candle at both ends for years; you love bacon; and you don’t run unless someone’s chasing you.

Let’s imagine that your amyloid plaques have reached that tipping point. Your scale arm has crashed to the floor. You’ve set fire to the forest, causing inflammation, tangles and cell death. You should be symptomatic for Alzheimer’s. You should be having trouble finding words and keys. But you might not be.

There’s one more thing you can do to protect yourself from experiencing the symptoms of Alzheimer’s, and it has to do with neural plasticity and cognitive reserve. Remember, having Alzheimer’s is ultimately a result of losing synapses. The average brain has over 100 trillion synapses, which is fantastic; we’ve got a lot to work with. And this isn’t a static number. We gain and lose synapses all the time, through a process known as neural plasticity. Every time we learn something new, we are creating and strengthening new neural connections, new synapses.

In the Nun Study, 678 nuns, who were all over the age of 75 at the beginning of the study, were followed for more than two decades. They received regular physical checkups and cognitive tests, and when they died, they all donated their brains for autopsy. In some of these brains, scientists discovered something surprising. Despite the presence of plaques, tangles and brain shrinkage — what appeared to be unquestionable signs of Alzheimer’s — the nuns who possessed these brains had showed no symptoms of having the disease while they were alive.

Scientists think these nuns had a high level of cognitive reserve — meaning they had more functional synapses. People who have more years of formal education, who have a high degree of literacy, who regularly engage in mentally stimulating activities, all have more cognitive reserve. They have an abundance and a redundancy in neural connections. Even if they have a disease like Alzheimer’s compromising some of their synapses, they’ve got many extra backup connections, which buffers them from noticing that anything is amiss.

Why does this matter? I’ll give you a simplified example. Let’s say you only know one thing about a subject, and the subject is me. You know I wrote the novel Still Alice, and it’s the only thing you know about me. You have that single neural connection, that one synapse. Now, imagine you have Alzheimer’s. You have plaques, tangles, inflammation and microglia devouring that synapse. When someone asks you, “Hey, who wrote Still Alice?” you can’t remember, because that synapse is either failing or gone.

But what if you had learned more about me? Perhaps you learned four things about me. Now, imagine you have Alzheimer’s, and three of those synapses are damaged or destroyed. However, you still have a way to detour the wreckage; you can still remember my name.

We can be resilient to the presence of Alzheimer’s through the recruitment of yet-undamaged pathways. And we can start to create these pathways, this cognitive reserve, by learning new things. Ideally, we want these new things to be as rich in meaning as possible, recruiting sight, sound, associations and emotion.

This doesn’t mean doing crossword puzzles — you don’t want to simply retrieve information you’ve already learned. That’s like traveling down old, familiar streets, cruising neighborhoods you already know. You want to pave new neural roads. Building an Alzheimer’s-resistant brain could mean learning to speak Italian, meeting new friends, reading a book, or listening to a great TED Talk.

And if — despite all of your efforts — someday you are diagnosed with Alzheimer’s, there are lessons I’ve learned from my grandmother and the dozens of people living with this disease whom I’ve come to know. Being diagnosed with the disease does not mean you’re dying tomorrow, so keep living. You won’t lose your emotional memory. You’ll still be able to understand love and joy. You may not remember what you read five minutes ago, but you’ll remember how it made you feel. And you are more than what you can remember.



About the author

Lisa Genova is a neuroscientist and a novelist. Her writing explores the lives of people living with neurological diseases and disorders. A bestselling author, one of her novels was adapted into the Oscar-winning film, Still Alice.